
Enhancing Multi-User Collaboration
with Powerwalls

V́ıt Rusňák
Masaryk University
Botanická 68a
Brno, 602 00, Czech Republic
xrusnak@fi.muni.cz

Lukáš Ručka
Masaryk University
Botanická 68a
Brno, 602 00, Czech Republic
xrucka@fi.muni.cz

Copyright is held by the author/owner(s). CHI 2013 Extended
Abstracts, April 27 – May 2, 2013, Paris, France.

ACM 978-1-4503-1952-2/13/04.

Abstract
Powerwalls and large tabletops can be viewed as native
group collaborative environments. Further integration of
multi-touch overlay enables concurrent multi-user
interaction with displayed content. In our work, we focus
on extending basic multi-touch sensor with capability of
distinguishing individual users and their association with
touch input events. Our goal is an unobtrusive system for
the user based on the multi-sensor integration of
commodity hardware – multi-touch overlay sensors, MS
Kinect or other devices.

Author Keywords
Enhanced multi-touch interaction; user distinguishing;
group collaborative environment.

ACM Classification Keywords
H.5.2 [User Interfaces]: Input devices and strategies,
Interaction styles

General Terms
Design, Human factors

Introduction
With the advent of various multi-touch overlay frames,
panels or foils the direct multi-touch interaction becomes
feasible in the domain of powerwalls and large



tabletops [7, 15]. Although multi-user gist of such input
layer enables concurrent work of multiple people, current
multi-touch sensors are neither capable of distinguishing
individual users nor their association with input events.
Extending mere multi-touch capability with metadata for
association of touch events with individual users could
significantly improve collaborative work. For instance,
resolving conflict situations where the activities of two
users standing close to each other mutually interfere [8].

Figure 1: Powerwall scenario
with a depth sensor capturing the
display area; a) front view, b)
side view

We explore general methods for coupling of sensors and
multi-device orchestration in powerwall and large tabletop
scenarios. The overall goal is to develop an ubiquitous
interactive space providing features such as continuous
user distinguishing and content personalization whilst
avoiding prior user orchestration (e.g., special wearables or
markers for user tracking). This paper elaborates on the
novel modular framework for rapid development of such
interactive user interfaces which focuses on high
scalability of multi-sensor integration and provides
seamless association of input events with users.

Further we give a brief overview of current approaches for
user distinguishing in powerwalls. Then, the basic
concepts of our framework are presented followed by a
brief description of underlying algorithms. Discussion of
our prototype implementation and its evaluation follows.
Conclusion and outline of the future work conclude the
paper.

Figure 2: Tabletop scenario with
a depth sensor is placed above
the surface; a) top view, b) side
view

Related Work
The topics of distinguishing users and associating them
with actions they performed are studied broadly in
tabletops – e.g., [4, 1, 2, 12]. In powerwall scenario the
focus is laid mainly on a plain multi-user interaction
[6, 15] and user distinguishing and consequent association

of input events with them remain largely an unexplored
topic.

Touch-less direct interaction was presented in [14]. In this
installation, multiple cameras placed below the display
wall canvas are used to triangulate positions of objects
(i.e., fingers and hands) in a plane parallel to the display.
Association of input events with users is possible only
when users stand at fixed positions in front of the screen.
Hutama et al. [5] presented a method for distinguishing
multiple smartphone interactions on a multi-touch display
wall. Each smartphone is equipped with two prongs and
an integrated accelerometer. Whenever the smartphone
touches the interactive surface of the display wall,
accelerometer data and registered touch points are
combined and the phone is identified.

Optical motion capture systems provide a reliable method
for continuous distinguishing of users and other objects
but require prior user orchestration. Ballendat et al. [3]
use this technique for detection of users and personal
devices such as cell phone or pen equipped with
retro-reflective markers. The system is able to identify
tracked objects based on their absolute and relative
positions. The WILD Room project [9] also utilizes optical
motion capture to track devices serving as remote
controllers of the powerwall. Although the object tracking
excels in terms of precision, the requirement of additional
wearables (e.g., a cap with retro-reflective markers) may
be obtrusive for the users.

LightSpace [16] allows users to interact on, above and
between several surfaces within small-sized rooms. It
utilizes multiple MS Kinect devices to track users without
the need for special wearables but it does not scale for
large setups.



In general, individual setups are unique and differ from
each other. Although there are several toolkits for
developing interactive (mainly desktop) applications –
such as ICon [10] – there is no tool focused on developing
complex interactive interfaces or environments. These
facts initiated our work on Multi-Sensor framework
(MUSE) which will provide a scalable multi-sensor
integration (for both same and various sensor types)
together with a seamless association of input events with
users.

Framework Design

MT 
sensor 1

MT 
sensor 2

MT 
sensor 3

MT 
sensor 4

Depth 
sensor 1

Virtual
Touch
Sensor

Virtual 
Camera
Sensor

W
rap

pe
rs

Vi
rtu

al 
se

ns
or

s 
A

gg
re

ga
to

r

Application

TUIO 2.0 messages

Raw data 

T
U

IO
 2

.0
 L

ib
ra

ry

Output 
Message Generator

Matching function

Figure 3: The framework
diagram for the system consisting
of 4 touch sensors and one depth
sensor

The purpose of MUSE is to provide a general interaction
layer to existing high-resolution visualization systems
(e.g., SAGE [11]). The Figure 3 shows the setup that we
use for experiments. The framework is highly modular
with three-layer structure. These features enable
integration of new modules to all layers easily in future.

Wrapper layer is the bottom layer which provides an
interface between various physical sensor devices and
unified environment of the MUSE. Each type of device
has its own wrapper module; every physical device is
represented as a separate wrapper. Wrappers transform
heterogeneous input data into the unified messages of
TUIO 2.0 which is used as the communication protocol.

Figure 4: Virtual touch sensor
algorithm

Virtual sensor layer ensures assembling sensor wrappers of
the same kind into a seamless virtual sensor. For example,
virtual touch sensor makes several multi-touch overlay
panels behave as a single device. The concept of virtual
sensor is also applicatble to other devices – virtual depth
sensor could combine multiple MS Kinect devices in order
to achieve higher resolution, thus increased precision.

Aggregating Layer consists of two main modules –
touch-point matching and TUIO 2.0 output message

generator. Touch-point matching associates data from
virtual touch sensor with 2D image blobs representing
user, given from (depth) camera-based tracker. The
description of an input event is then labeled with
particular user. Message generator produces outgoing
messages in extended TUIO 2.0 format and passes them
to an application (visualization middleware, gesture
recognizer, etc.).

Algorithms
The ideas of two crucial algorithms are demonstrated on
virtual touch sensor and touch point matching algorithms.

Virtual touch sensor algorithm provides two operations:

a) remapping of touch events from received messages to
dimensions of virtual sensor,

b) and concatenation of the touch events that are
performed over two or more overlay panels as a single
stroke.

The top-level structure of the algorithm is shown in
Figure 4. When the algorithm receives a touch event
message which starts and ends not too close to bezels
(i.e., there is still some space untouched to the bezel), it
modifies the coordinates of the touch event according to
the position of the touch event projected in virtual sensor
dimensions and changes the event identifier. Events which
end or start close to the surface bezel are considered as
parts of cross-sensor stroke. Thus, they are marked for
further processing in concatenation algorithm. Due to the
inaccuracy caused by crossing bezels, it is necessary to set
up two values for time (∆t) and spatial (∆s) thresholds.
Two strokes are concatenated when the latter starts in
time < ∆t and its first coordinate is in ∆s range from the
last position of the former stroke. The concept of virtual
sensor is an approach to overcome limitation of



single-device multi-touch sensors which do not scale well.
They are constrained by number of concurrent touch
points or maximal dimensions. Virtual touch sensor
handles time synchronization and concatenation of related
consequent strokes. One consequence is the possibility to
use existing gesture recognition algorithms instead of
developing new ones, adapted for a distributed
environment of multiple multi-touch sensors.

Touch point matching algorithm processes high-precision
data representing input events from virtual touch sensor
with image blobs representing users from camera tracking
device. The core principle is to find position of touch
event within one of recognized image blobs. The premise
for the algorithm is that each installation is static and its
configuration (position of sensors and their parameters) is
stored in a configuration file. In the first step, coordinates
of touch points from virtual sensor and positions of blobs
representing users are transformed to a joint coordinate
system in which the algorithm operates. Due to
low-resolution of depth sensors is problematic to recognize
individual fingers so the algorithm represents the palm as
an ellipse. Matching function is currently simplified to
finding mutual position of touch point and this ellipse
defined according to the standard equation:

(x −m)2

a2
+

(y − n)2

b2
= f (z).

The match is recognized when touch point coordinates are
inside the ellipse area (f (z) < 1). When touch event is
matched with one of the blobs, its description is extended
with identification of corresponding user.

Prototype Implementation
The prototype implementation of the MUSE framework
consists of a) two wrapper modules – a general wrapper

for multi-touch sensors and MS Kinect wrapper, b) virtual
sensor module for multi-touch wrappers, c) simple touch
point matching module and the output message generator.
The physical arrangements of individual sensor devices as
well as mutual position of camera-based tracking sensors
and touch input layer are stored in an XML file. For
benchmarking purposes we created an application for
rendering touch points and blobs of users’ hands.

Multi-touch wrapper supports various single- and
multi-touch devices by taking advantage of Linux kernel
input layer API. Wrapper captures raw events received
from a physical sensor and transforms them to TUIO 2.0
messages. MS Kinect wrapper processes a depth video
stream acquired from a device. Its purpose is to extract
blob descriptions that represent individual users from the
image frames. Blobs are continuously tracked using the
tracking algorithm proposed by Senior et al. [13].

Touch point matching module receives TUIO 2.0 data
streams from virtual touch sensor and from the MS Kinect
wrapper. Data streams contain descriptions of touch
events and blobs respectively.

Evaluation
We evaluated processing speed of individual modules,
concatenation and matching accuracy in order to identify
key issues for the next iteration of the development
process.

Processing speed. Table 1 summarizes processing speed of
individual parts of the framework. For the wrapper
modules we measured the time elapsed from receiving
data (touch event/image frame) from the device to the
moment when TUIO 2.0 messages were dispatched.
Slowness of the MS Kinect wrapper is due to complex
image processing operations (multi-touch wrapper



transforms input raw data into TUIO 2.0 messages only).
The average processing time for a single frame is approx.
23 ms – i.e., the processing is still real-time with almost
10 ms reserve for further improving of the user tracking
algorithm.

Wrapper modules
Multi-touch MS Kinect
12.5 ± 8.6 22.6 ± 8.4

Virtual sensor module
Localhost LAN

0.063 ± 0.003 0.066 ± 0.004

Aggregation module
Total Matching alg.

0.3 ± 0.1 0.044 ± 0.02

Table 1: Processing speed of the
MUSE framework modules in
[ms]

∆s \ ∆t 0.3 s 0.5 s 1 s
300 px 65 70 68
375 px 69 67 72
450 px 68 78 89

Table 2: Concatenation
algorithm accuracy for various ∆t
and ∆s [%]

Virtual sensor module processing time was measured in:
a) Localhost scenario that represents small-scale
powerwall or tabletop (sensors were plugged into a single
PC), b) and LAN scenario representing large-scale
wall-sized powerwall (sensors were plugged into different
PCs connected over LAN). We performed several types of
touch events that were spread across two, three and four
sensors. As we can see, there is no significant slowdown in
network scenario. Touch point matching was
benchmarked from two perspectives – processing time of
the whole MUSE framework aggregator layer and
matching algorithm itself. The aggregator layer processed
messages sequentially which resulted in higher
computational overhead.

Concatenation accuracy. We investigated the influence of
time and spatial threshold values (∆t and ∆s) on
concatenating function. Proper threshold values highly
depend on physical parameters of sensor overlays (e.g.,
frame rate, width of a bezel area) and have to be
obtained by experimental calibration for each installation.
To determine the threshold values we conducted an
informal experiment based on drawing lines across the
bezels. Table 2 shows 9 combinations of threshold values
and relevant accuracies.

When concatenating consecutive touch events whose
trajectories and the bezel form an acute angle < 20◦ the
algorithm results in false-negatives. Thus the future
versions of the virtual sensor module will have to keep
tracking not only each contact position, but velocity also.

Matching Accuracy. Due to using only a depth sensor of
the MS Kinect we struggled with inaccurate positions of
blobs. This resulted in reduced matching precision and
occurrence of approx. 10 % of false negatives for touch
points that were close to the edge of an ellipse (approx.
10-pixel diameter). Further, the “ellipse-matching” was
too simplistic. The false positive touch point might occur
under the wrist or in the middle of the user’s palm where
user usually does not touch. Since user usually does not
touch in these areas, it could be someone’s finger
touching the sensor occluded by the hand of another user.

In future versions we are going to combine data from both
depth sensor and VGA camera which will increase the
accuracy and will reduce losses of blob details (e.g.,
fingers). Further improvements are expected in the next
generation of depth sensors having IR sensors with higher
resolution. The other issue was the occlusion of hands
resulting in merging the relevant blobs into a single one.
We identified the problem in the blob tracking algorithm
which will be one of the focal points of our future work
too.

Conclusion and Future Work
Extending mere multi-touch input layer with an
association of input events with users is the next step
towards a natural interaction of the real-world
environment. In our work, we concentrate on techniques
for sensor coupling and multi-device orchestration. We
presented the basic concepts of our framework for building
complex interactive systems utilizing multiple commodity
sensors (both same and different kinds).

Our initial observations are quite encouraging. The
proof-of-concept evaluation showed the processing speed
of the framework is high enough to ensure real-time event



processing. This enables further research of gesture
recognition in the area of multi-sensor group collaborative
systems based on powerwalls and large tabletops.

The principles of the framework and algorithms are not
limited to touch-based interaction only, but may serve as
complex multi-modal interaction input layer. The
algorithms showed to be promising for further exploration
and they open a wide range of possible directions for
future work, some of which we only touched upon in the
paper.

References
[1] Agarwal, A., et al. High Precision Multi-touch

Sensing on Surfaces using Overhead Cameras. In
Proc. ITS ’07 (2007), 197–200.

[2] Annett, M., et al. Medusa: A Proximity-Aware
Multi-Touch Tabletop. In Proc. UIST ’11 (2011),
337–346.

[3] Ballendat, T., Marquardt, N., and Greenberg, S.
Proxemic Interaction: Designing for a Proximity and
Orientation-Aware Environment. In Proc. ITS ’10
(2010), 121–130.

[4] Dietz, P., et al. DiamondTouch: A Multi-User Touch
Technology. In Proc. UIST ’11 (2011), 219–226.

[5] Hutama, W., Song, P., Fu, C., and Goh, W. B.
Distinguishing multiple smart-phone interactions on a
multi-touch wall display using tilt correlation. In
Proc. CHI ’11 (2011), 3315.

[6] Jagodic, R. Collaborative Interaction And Display
Space Organization In Large High-Resolution
Environments. Ph.d. thesis, 2011.

[7] Jagodic, R., et al. Enabling multi-user interaction in
large high-resolution distributed environments.
Future Generation Computer Systems (2010),

914–923.
[8] Marshall, P., et al. Rethinking ’multi-user’: an

in-the-wild study of how groups approach a
walk-up-and-use tabletop interface. In Proc. CHI ’11
(2011).

[9] Nancel, M., Wagner, J., Pietriga, E., Chapuis, O.,
and Mackay, W. Mid-air Pan-and-Zoom on
Wall-Sized Displays. In Proc. CHI ’11 (2011),
177–186.

[10] P., D., and J.-D., F. Support for Input Adaptability in
the ICon Toolkit. In Proc. ICMI ’04 (2004), 212–219.

[11] Renambot, L., et al. SAGE: the Scalable Adaptive
Graphics Environment. In Proc. WACE ’04 (2004), 8
pp.

[12] Richter, S., Holz, C., and Baudisch, P. Bootstrapper:
Recognizing Tabletop Users by their Shoes. In Proc.
CHI ’12 (2012), 4 pp.

[13] Senior, A., Hampapur, A., Tian, Y.-L., Brown, L.,
Pankanti, S., and Bolle, R. Appearance models for
occlusion handling. Image and Vision Computing 24,
11 (2006), 1233–1243.

[14] Stødle, D., Hagen, T.-M. S., Bjørndalen, J. M., and
Anshus, O. J. Gesture-based, touch-free multi-user
gaming on wall-sized, high-resolution tiled displays.
In Proc. PerGames 2007 (2007), 75–83.

[15] Westing, B., Urick, B., Esteva, M., Rojas, F., and
Xu, W. Integrating Multi-touch in High-resolution
Display Environments. In State of the Practice
Reports, SC ’11 (2011), 8:1–8:9.

[16] Wilson, A. D., and Hrvoje, B. Combining multiple
depth cameras and projectors for interactions on,
above and between surfaces. In Proc. UIST ’10
(2010).


	Introduction
	Related Work
	Framework Design
	Algorithms
	Prototype Implementation
	Evaluation
	Conclusion and Future Work
	References

